Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.027
Filtrar
1.
Cancer Lett ; 591: 216859, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615928

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a solid organ malignancy with a high mortality rate. Statistics indicate that its incidence has been increasing as well as the associated deaths. Most patients with PDAC show poor response to therapies making the clinical management of this cancer difficult. Stromal cells in the tumor microenvironment (TME) contribute to the development of resistance to therapy in PDAC cancer cells. Cancer-associated fibroblasts (CAFs), the most prevalent stromal cells in the TME, promote a desmoplastic response, produce extracellular matrix proteins and cytokines, and directly influence the biological behavior of cancer cells. These multifaceted effects make it difficult to eradicate tumor cells from the body. As a result, CAF-targeting synergistic therapeutic strategies have gained increasing attention in recent years. However, due to the substantial heterogeneity in CAF origin, definition, and function, as well as high plasticity, majority of the available CAF-targeting therapeutic approaches are not effective, and in some cases, they exacerbate disease progression. This review primarily elucidates on the effect of CAFs on therapeutic efficiency of various treatment modalities, including chemotherapy, radiotherapy, immunotherapy, and targeted therapy. Strategies for CAF targeting therapies are also discussed.

2.
Cell Commun Signal ; 22(1): 208, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566066

RESUMO

This review presents a comprehensive exploration of the pivotal role played by the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex, with a particular focus on Nesprin proteins, in cellular mechanics and the pathogenesis of muscular diseases. Distinguishing itself from prior works, the analysis delves deeply into the intricate interplay of the LINC complex, emphasizing its indispensable contribution to maintaining cellular structural integrity, especially in mechanically sensitive tissues such as cardiac and striated muscles. Additionally, the significant association between mutations in Nesprin proteins and the onset of Dilated Cardiomyopathy (DCM) and Emery-Dreifuss Muscular Dystrophy (EDMD) is highlighted, underscoring their pivotal role in disease pathogenesis. Through a comprehensive examination of DCM and EDMD cases, the review elucidates the disruptions in the LINC complex, nuclear morphology alterations, and muscular developmental disorders, thus emphasizing the essential function of an intact LINC complex in preserving muscle physiological functions. Moreover, the review provides novel insights into the implications of Nesprin mutations for cellular dynamics in the pathogenesis of muscular diseases, particularly in maintaining cardiac structural and functional integrity. Furthermore, advanced therapeutic strategies, including rectifying Nesprin gene mutations, controlling Nesprin protein expression, enhancing LINC complex functionality, and augmenting cardiac muscle cell function are proposed. By shedding light on the intricate molecular mechanisms underlying nuclear-cytoskeletal interactions, the review lays the groundwork for future research and therapeutic interventions aimed at addressing genetic muscle disorders.


Assuntos
Doenças Musculares , Distrofia Muscular de Emery-Dreifuss , Humanos , Membrana Nuclear/metabolismo , Membrana Nuclear/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doenças Musculares/metabolismo , Citoesqueleto/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Distrofia Muscular de Emery-Dreifuss/patologia
3.
World J Gastrointest Surg ; 16(3): 833-841, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38577082

RESUMO

BACKGROUND: Regarding the incidence of malignant tumors in China, the incidence of liver cancer ranks fourth, second only to lung, gastric, and esophageal cancers. The case fatality rate ranks third after lung and cervical cancer. In a previous study, the whole-process management model was applied to patients with breast cancer, which effectively reduced their negative emotions and improved treatment adherence and nursing satisfaction. AIM: To explore Mental state and self-care ability in patients with liver cancer: effects of whole-process case management. METHODS: In this single-center, randomized, controlled study, 60 randomly selected patients with liver cancer who had been admitted to our hospital from January 2021 to January 2022 were randomly divided into an observation group (n = 30), who received whole-process case management on the basis of routine nursing measures, and a control group (n = 30), who were given routine nursing measures. We compared differences between the two groups in terms of anxiety, depression, the level of hope, self-care ability, symptom distress, sleep quality, and quality of life. RESULTS: Post-intervention, Hamilton anxiety scale, Hamilton depression scale, memory symptom assessment scale, and Pittsburgh sleep quality index scores in both groups were lower than those pre-intervention, and the observation group had lower scores than the control group (P < 0.05). Herth hope index, self-care ability assessment scale-revision in Chinese, and quality of life measurement scale for patients with liver cancer scores in both groups were higher than those pre-intervention, with higher scores in the observation group compared with the control group (P < 0.05). CONCLUSION: Whole-process case management can effectively reduce anxiety and depression in patients with liver cancer, alleviate symptoms and problems, and improve the level of hope, self-care ability, sleep quality, and quality of life, as well as provide feasible nursing alternatives for patients with liver cancer.

5.
Biomed Pharmacother ; 174: 116543, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38608523

RESUMO

In recent years, there has been an increasing number of related studies on exosomes. Most studies have focused on exosomes derived from mammals, confirming the important role that exosomes play in cell communication. Plants, as a natural ingredient, plant-derived exosomes have been confirmed to have similar structures and functions to mammalian-derived exosomes. Plant-derived exosome-like nanoparticles (PELNs) are lipid bilayer membrane nanovesicles containing bioactive constituents such as miRNA, mRNA, protein, and lipids obtained from plant cells, that can participate in intercellular communication and mediate transboundary communication, have high bioavailability and low immunogenicity, are relatively safe, and have been shown to play an important role in maintaining cell homeostasis and preventing, and treating a variety of diseases. In this review, we describe the biogenesis, isolation and purification methods, structural composition, stability, safety, function of PELNs and challenges. The functions of PELNs in anti-inflammatory, antioxidant, antitumor and drug delivery are mainly described, and the status of research on exosome nanoparticles of Chinese herbal medicines is outlined. Overall, we summarized the importance of PELNs and the latest research results in this field and provided a theoretical basis for the future research and clinical application of PELNs.

6.
Magn Reson Med ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594906

RESUMO

Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.

7.
Chin Med ; 19(1): 59, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589925

RESUMO

BACKGROUND: Myocardial ischemia/reperfusion injury (MIRI) is an important complication of reperfusion therapy, and has a lack of effective prevention and treatment methods. Oleuropein (OP) is a natural strong antioxidant with many protective effects on cardiovascular diseases, but its protective effect on MIRI has not yet been studied in depth. METHODS: Tert-Butyl hydroperoxide (tBHP) was used to establish an in vitro oxidative stress model. Cell viability was detected by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) and lactate dehydrogenase (LDH). Flow cytometry and fluorescence assays were performed for evaluating the ROS levels and mitochondrial membrane potential (MMP). Immunofluorescence analysis detected the NRF2 nuclear translocation and autophagy indicators. Further, Western blotting and quantitative real-time PCR were performed to evaluate the expression levels of proteins and mRNAs. Molecular docking, CETSA, and molecular interaction analysis explored the binding between OP and TLR4. The protective effects of OP in vivo were determined using a preclinical MIRI rat model. RESULTS: OP protected against tBHP-treated injury, reduced ROS levels and reversed the damaged MMP. Mechanistically, OP activated NRF2-related antioxidant pathways, inhibited autophagy and attenuated the TLR4/MAPK signaling pathway in tBHP-treated H9C2 cells with a high binding affinity to TLR4 (KD = 37.5 µM). The TLR4 inhibitor TAK242 showed a similar effect as OP. In vivo, OP could alleviate cardiac ischemia/reperfusion injury and it ameliorated adverse cardiac remodeling. Consistent with in vitro studies, OP inhibited TLR4/MAPK and autophagy pathway and activated NRF2-dependent antioxidant pathways in vivo. CONCLUSION: This study shows that OP binds to TLR4 to regulate oxidative stress and autophagy for protecting damaged cardiomyocytes, supporting that OP can be a potential therapeutic agent for MIRI.

8.
Commun Biol ; 7(1): 295, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461208

RESUMO

Pseudomonas aeruginosa, a common nosocomial pathogen, relies on siderophores to acquire iron, crucial for its survival in various environments and during host infections. However, understanding the molecular mechanisms of siderophore regulation remains incomplete. In this study, we found that the BfmRS two-component system, previously associated with biofilm formation and quorum sensing, is essential for siderophore regulation under high osmolality stress. Activated BfmR directly bound to the promoter regions of pvd, fpv, and femARI gene clusters, thereby activating their transcription and promoting siderophore production. Subsequent proteomic and phenotypic analyses confirmed that deletion of BfmRS reduces siderophore-related proteins and impairs bacterial survival in iron-deficient conditions. Furthermore, phylogenetic analysis demonstrated the high conservation of the BfmRS system across Pseudomonas species, functional evidences also indicated that BfmR homologues from Pseudomonas putida KT2440 and Pseudomonas sp. MRSN12121 could bind to the promoter regions of key siderophore genes and osmolality-mediated increases in siderophore production were observed. This work illuminates a novel signaling pathway for siderophore regulation and enhances our understanding of siderophore-mediated bacterial interactions and community establishment.


Assuntos
Infecções por Pseudomonas , Sideróforos , Humanos , Sideróforos/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pressão Osmótica , Filogenia , Proteômica , Ferro/metabolismo , Pseudomonas/metabolismo
9.
Mol Biotechnol ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472694

RESUMO

This study focused on identifying potential key lncRNAs associated with gout under the mechanisms of copper death and iron death through ceRNA network analysis and Random Forest (RF) algorithm, which aimed to provide new insights into the molecular mechanisms of gout, and potential molecular targets for future therapeutic strategies of gout. Initially, we conducted an in-depth bioinformatics analysis of gout microarray chips to screen the key cuproptosis-related genes (CRGs) and key ferroptosis-related genes (FRGs). Using these data, we constructed a key ceRNA network for gout. Finally, key lncRNAs associated with gout were identified through the RF algorithm combined with ROC curves, and validated using the Comparative Toxicogenomics Database (CTD). We successfully identified NLRP3, LIPT1, and DBT as key CRGs associated with gout, and G6PD, PRKAA1, LIG3, PHF21A, KLF2, PGRMC1, JUN, PANX2, and AR as key FRGs associated with gout. The key ceRNA network identified four downregulated key lncRNAs (SEPSECS-AS1, LINC01054, REV3L-IT1, and ZNF883) along with three downregulated mRNAs (DBT, AR, and PRKAA1) based on the ceRNA theory. According to CTD validation inference scores and biological functions of target mRNAs, we identified a potential gout-associated lncRNA ZNF883/hsa-miR-539-5p/PRKAA1 regulatory axis. This study identified the key lncRNA ZNF883 in the context of copper death and iron death mechanisms related to gout for the first time through the application of ceRNA network analysis and the RF algorithm, thereby filling a research gap in this field and providing new insights into the molecular mechanisms of gout. We further found that lncRNA ZNF883 might function in gout patients by regulating PRKAA1, the mechanism of which was potentially related to uric acid reabsorption in the proximal renal tubules and inflammation regulation. The proposed lncRNA ZNF883/hsa-miR-539-5p/PRKAA1 regulatory axis might represent a potential RNA regulatory pathway for controlling the progression of gout disease. This discovery offered new molecular targets for the treatment of gout, and had significant implications for future therapeutic strategies in managing the gout.

10.
Anal Chem ; 96(14): 5499-5508, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38547315

RESUMO

Characterizing the profiles of proteome and metabolome at the single-cell level is of great significance in single-cell multiomic studies. Herein, we proposed a novel strategy called one-shot single-cell proteome and metabolome analysis (scPMA) to acquire the proteome and metabolome information in a single-cell individual in one injection of LC-MS/MS analysis. Based on the scPMA strategy, a total workflow was developed to achieve the single-cell capture, nanoliter-scale sample pretreatment, one-shot LC injection and separation of the enzyme-digested peptides and metabolites, and dual-zone MS/MS detection for proteome and metabolome profiling. Benefiting from the scPMA strategy, we realized dual-omic analysis of single tumor cells, including A549, HeLa, and HepG2 cells with 816, 578, and 293 protein groups and 72, 91, and 148 metabolites quantified on average. A single-cell perspective experiment for investigating the doxorubicin-induced antitumor effects in both the proteome and metabolome aspects was also performed.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Humanos , Proteoma/metabolismo , Cromatografia Líquida , Metaboloma , Células HeLa
11.
Cell Genom ; 4(4): 100523, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38508198

RESUMO

Polygenic risk scores (PRSs) are an emerging tool to predict the clinical phenotypes and outcomes of individuals. We propose PRSmix, a framework that leverages the PRS corpus of a target trait to improve prediction accuracy, and PRSmix+, which incorporates genetically correlated traits to better capture the human genetic architecture for 47 and 32 diseases/traits in European and South Asian ancestries, respectively. PRSmix demonstrated a mean prediction accuracy improvement of 1.20-fold (95% confidence interval [CI], [1.10; 1.3]; p = 9.17 × 10-5) and 1.19-fold (95% CI, [1.11; 1.27]; p = 1.92 × 10-6), and PRSmix+ improved the prediction accuracy by 1.72-fold (95% CI, [1.40; 2.04]; p = 7.58 × 10-6) and 1.42-fold (95% CI, [1.25; 1.59]; p = 8.01 × 10-7) in European and South Asian ancestries, respectively. Compared to the previously cross-trait-combination methods with scores from pre-defined correlated traits, we demonstrated that our method improved prediction accuracy for coronary artery disease up to 3.27-fold (95% CI, [2.1; 4.44]; p value after false discovery rate (FDR) correction = 2.6 × 10-4). Our method provides a comprehensive framework to benchmark and leverage the combined power of PRS for maximal performance in a desired target population.


Assuntos
Doença da Artéria Coronariana , Osteopatia , Humanos , Herança Multifatorial/genética , 60488 , Benchmarking , Doença da Artéria Coronariana/diagnóstico
12.
Magn Reson Med ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38523590

RESUMO

PURPOSE: This study evaluated the velocity-selective (VS) MRA with different VS labeling modules, including double refocused hyperbolic tangent, eight-segment B1-insensitive rotation, delay alternating with nutation for tailored excitation, Fourier transform-based VS saturation, and Fourier transform-based inversion. METHODS: These five VS labeling modules were evaluated first through Bloch simulations, and then using VSMRA directly on various cerebral arteries of healthy subjects. The relative signal ratios from arterial ROIs and surrounding tissues as well as relative arteria-tissue contrast ratios of different methods were compared. RESULTS: Double refocused hyperbolic tangent and eight-segment B1-insensitive rotation showed very similar labeling effects. Delay alternating with nutation for tailored excitation yielded high arterial signal but with residual tissue signal due to the spatial banding effect. Fourier transform-based VS saturation with half the time of other techniques serves as an efficient nonsubtractive VSMRA method, but the remaining tissue signal still obscured some small distal arteries that were delineated by other subtraction-based VSMRA, allowing more complete cancelation of static tissue. Fourier transform-based inversion produced the highest arterial signal in VSMRA with minimal tissue background. CONCLUSION: This is the first study that angiographically compared five different VS labeling modules. Their labeling characteristics on arteries and tissue and implications for VSMRA and VS arterial spin labeling are discussed.

13.
Sci Adv ; 10(11): eadl4871, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489356

RESUMO

Noise-enhanced applications in open quantum walk (QW) has recently seen a surge due to their ability to improve performance. However, verifying the success of open QW is challenging, as mixed-state tomography is a resource-intensive process, and implementing all required measurements is almost impossible due to various physical constraints. To address this challenge, we present a neural-network-based method for reconstructing mixed states with a high fidelity (∼97.5%) while costing only 50% of the number of measurements typically required for open discrete-time QW in one dimension. Our method uses a neural density operator that models the system and environment, followed by a generalized natural gradient descent procedure that significantly speeds up the training process. Moreover, we introduce a compact interferometric measurement device, improving the scalability of our photonic QW setup that enables experimental learning of mixed states. Our results demonstrate that highly expressive neural networks can serve as powerful alternatives to traditional state tomography.

14.
Se Pu ; 42(3): 275-281, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38503704

RESUMO

A non-invasive condensation collection-ion chromatography method was established for the determination of organic acids and anions including lactic acid, formic acid, acetic acid, pyruvic acid, chloride, nitrate, nitrite, and sulfate in the exhaled breath of humans. The breath exhaled was condensed and collected using a home-made exhaled breath condensation equipment. This equipment included a disposable mouthpiece as a blow-off port, one-way valve and flow meter, cold trap, disposable condensate collection tube placed in the cold trap, and gas outlet. A standard sampling procedure was used. Before collection, the collection temperature and sampling volume were set on the instrument control panel, and sampling was started when the cold-trap temperature dropped to the set value, while maintaining the balance. Subjects were required to gargle with pure water before sampling. During the sampling process, the subjects were required to inhale deeply until the lungs were full of gas and then exhale evenly through the air outlet. When the set volume was collected, the instrument made a prompt sound; then, the collection was immediately ended, the expiration time was recorded, and the average collection flow was calculated according to the expiration time and sampling volume. After collection, the disposable condensation collection tube was immediately taken out, sealed, and stored in the refrigerator at -20 ℃ away from light, and immediately used for further testing. The organic acids and anions in exhaled breath condensation (EBC) were filtered through a 0.22 µm membrane filter before injection and detected by ion chromatography with conductivity detection. Factors such as collection temperature and collection flow rate during condensation collection were optimized. The optimal cooling temperature was set at -15 ℃, and the optimal exhaled breath flow rate was set at 15 L/min. The mobile phase consisted of a mixture of sodium carbonate (1.5 mmol/L) and sodium bicarbonate (3 mmol/L). The flow rate was 0.8 mL/min, and the injection volume was 100 µL. An IC-SA3 column (250 mm×4.0 mm) was used, and the temperature was set at 45 ℃. An ICDS-40A electrodialysis suppressor was used, and the current was set at 150 mA. The linear ranges of the eight organic acids and anions were 0.1-10.0 mg/L; their correlation coefficients (r) were ≥0.9993. The limits of detection (LODs) for the eight organic acids and anions were 0.0017-0.0150 mg/L based on a signal-to-noise ratio of 3, and the limits of quantification (LOQs) were 0.0057-0.0500 mg/L based on a signal-to-noise ratio of 10. The intra-day precisions were 5.06%-6.33% (n=5), and the inter-day precisions were 5.37%-7.50% (n=5). This method was used to detect organic acids and anions in the exhaled breath of five healthy subjects. The contents of organic acids and anions in the exhaled breath were calculated. The content of lactic acid was relatively high, at 1.13-42.3 ng/L, and the contents of other seven organic acids and anions were 0.18-11.0 ng/L. During a 10 km-long run, the majority of organic acids and anions in the exhaled breath of five subjects first increased and then decreased. However, due to abnormal metabolism, the content changes of lactic acid, acetic acid, pyruvic acid and chloride in one subject were obviously different from others during exercise, showing a continuous rise. This method has the advantages of involving a simple sampling process and exhibiting good precision, few side effects, and no obvious discomfort or risk to the subjects. This study provides experimental ideas and a theoretical basis for future research on human metabolites.


Assuntos
Cloretos , Ácido Pirúvico , Humanos , Ânions , Ácido Láctico/análise , Cromatografia , Acetatos/análise
15.
Zool Res ; 45(2): 381-397, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485507

RESUMO

The autotetraploid Carassius auratus (4nRR, 4 n=200, RRRR) is derived from whole-genome duplication of Carassius auratus red var. (RCC, 2 n=100, RR). In the current study, we demonstrated that chromatophores and pigment changes directly caused the coloration and variation of 4nRR skin (red in RCC, brownish-yellow in 4nRR). To further explore the molecular mechanisms underlying coloration formation and variation in 4nRR, we performed transcriptome profiling and molecular functional verification in RCC and 4nRR. Results revealed that scarb1, associated with carotenoid metabolism, underwent significant down-regulation in 4nRR. Efficient editing of this candidate pigment gene provided clear evidence of its significant role in RCC coloration. Subsequently, we identified four divergent scarb1 homeologs in 4nRR: two original scarb1 homeologs from RCC and two duplicated ones. Notably, three of these homeologs possessed two highly conserved alleles, exhibiting biased and allele-specific expression in the skin. Remarkably, after precise editing of both the original and duplicated scarb1 homeologs and/or alleles, 4nRR individuals, whether singly or multiply mutated, displayed a transition from brownish-yellow skin to a cyan-gray phenotype. Concurrently, the proportional areas of the cyan-gray regions displayed a gene-dose correlation. These findings illustrate the subfunctionalization of duplicated scarb1, with all scarb1 genes synergistically and equally contributing to the pigmentation of 4nRR. This is the first report concerning the functional differentiation of duplicated homeologs in an autopolyploid fish, substantially enriching our understanding of coloration formation and change within this group of organisms.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Carpa Dourada/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/veterinária , Pigmentação/genética , Genoma , Neoplasias Renais/genética , Neoplasias Renais/veterinária
16.
Biochem Genet ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526708

RESUMO

The study aims to explore the fluctuating expression of C/EBP Homologous Protein (CHOP) following rat carotid artery injury and its central role in vascular stenosis. Using in vivo rat carotid artery injury models and in vitro ischemia and hypoxia cell models employing human aortic endothelial cells (HAECs) and vascular smooth muscle cells (T/G HA-VSMCs), a comprehensive investigative framework was established. Histological analysis confirmed intimal hyperplasia in rat models. CHOP expression in vascular tissues was assessed using Western blot and immunohistochemical staining, and its presence in HAECs and T/G HA-VSMCs was determined through RT-PCR and Western blot. The study evaluated HAEC apoptosis, inflammatory cytokine secretion, cell proliferation, and T/G HA-VSMCs migration through Western blot, ELISA, CCK8, and Transwell migration assays. The rat carotid artery injury model revealed substantial fibrous plaque formation and vascular stenosis, resulting in an increased intimal area and plaque-to-lumen area ratio. Notably, CHOP is markedly elevated in vessels of the carotid artery injury model compared to normal vessels. Atorvastatin effectively mitigated vascular stenosis and suppresses CHOP protein expression. In HAECs, ischemia and hypoxia-induced CHOP upregulation, along with heightened TNFα, IL-6, caspase3, and caspase8 levels, while reducing cell proliferation. Atorvastatin demonstrated a dose-dependent suppression of CHOP expression in HAECs. Downregulation of CHOP or atorvastatin treatment led to reduced IL-6 and TNFα secretion, coupled with augmented cell proliferation. Similarly, ischemia and hypoxia conditions increased CHOP expression in T/G HA-VSMCs, which was concentration-dependently inhibited by atorvastatin. Furthermore, significantly increased MMP-9 and MMP-2 concentrations in the cell culture supernatant correlated with enhanced T/G HA-VSMCs migration. However, interventions targeting CHOP downregulation and atorvastatin usage curtailed MMP-9 and MMP-2 secretion and suppressed cell migration. In conclusion, CHOP plays a crucial role in endothelial injury, proliferation, and VSMCs migration during carotid artery injury, serving as a pivotal regulator in post-injury fibrous plaque formation and vascular remodeling. Statins emerge as protectors of endothelial cells, restraining VSMCs migration by modulating CHOP expression.

17.
J Org Chem ; 89(7): 5200-5206, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38500359

RESUMO

A regiodivergent allylation of 1H-indoles highly selectively at the C3 and N1 positions with ß-acyl allylic sulfides through desulfurative C-C/C-N bond-forming reactions has been developed under mild conditions. Notably, the remarkable site-selective switch can be achieved by a delicate choice of solvents and bases. This cost-efficient method displays a broad substrate scope, good functional compatibility, and excellent site-selectivity, thus offering a divergent synthesis of indole substituted α-branched enones, which possess diverse potential opportunities for further applications and derivatization.

19.
Eur J Neurosci ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38314647

RESUMO

The brain's dynamic spontaneous neural activity is significant in supporting cognition; however, how brain dynamics go awry in subjective cognitive decline (SCD) and mild cognitive impairment (MCI) remains unclear. Thus, the current study aimed to investigate the dynamic amplitude of low-frequency fluctuation (dALFF) alterations in patients at high risk for Alzheimer's disease and to explore its correlation with clinical cognitive assessment scales, to identify an early imaging sign for these special populations. A total of 152 participants, including 72 SCD patients, 44 MCI patients and 36 healthy controls (HCs), underwent a resting-state functional magnetic resonance imaging and were assessed with various neuropsychological tests. The dALFF was measured using sliding-window analysis. We employed canonical correlation analysis (CCA) to examine the bi-multivariate correlations between neuropsychological scales and altered dALFF among multiple regions in SCD and MCI patients. Compared to those in the HC group, both the MCI and SCD groups showed higher dALFF values in the right opercular inferior frontal gyrus (voxel P < .001, cluster P < .05, correction). Moreover, the CCA models revealed that behavioural tests relevant to inattention correlated with the dALFF of the right middle frontal gyrus and right opercular inferior frontal gyrus, which are involved in frontoparietal networks (R = .43, P = .024). In conclusion, the brain dynamics of neural activity in frontal areas provide insights into the shared neural basis underlying SCD and MCI.

20.
Anal Bioanal Chem ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358531

RESUMO

α-Glucosidase (α-Glu) is implicated in the progression and pathogenesis of type II diabetes (T2D). In this study, we developed a rapid colorimetric technique using platinum nanoparticles stabilized by chitosan (Ch-PtNPs) to detect α-Glu activity and its inhibitor. The Ch-PtNPs facilitate the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) into oxidized TMB (oxTMB) in the presence of dissolved O2. The catalytic hydrolysis of 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G) by α-Glu produces ascorbic acid (AA), which reduces oxTMB to TMB, leading to the fading of the blue color. However, the presence of α-Glu inhibitors (AGIs) hinders the generation of AA, allowing Ch-PtNPs to re-oxidize colorless TMB back to blue oxTMB. This unique phenomenon enables the colorimetric detection of α-Glu activity and AGIs. The linear range for α-Glu was found to be 0.1-1.0 U mL-1 and the detection limit was 0.026 U mL-1. Additionally, the half-maximal inhibition value (IC50) for acarbose, an α-Glu inhibitor, was calculated to be 0.4769 mM. Excitingly, this sensing platform successfully detected α-Glu activity in human serum samples and effectively screened AGIs. These promising findings highlight the potential application of the proposed strategy in clinical diabetes diagnosis and drug discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...